US009363068B2

a2 United States Patent

Azadet et al.

US 9,363,068 B2
Jun. 7,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

VECTOR PROCESSOR HAVING
INSTRUCTION SET WITH SLIDING
WINDOW NON-LINEAR CONVOLUTIONAL

FUNCTION

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: Kameran Azadet, Pasadena, CA (US);
Joseph Williams, Holmdel, NJ (US);
Meng-Lin Yu, Morganville, NJ (US)

Assignee: INTEL CORPORATION, Santa Clara,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 298 days.

Appl. No.: 14/168,615

Filed: Jan. 30, 2014

Prior Publication Data
US 2014/0317163 Al Oct. 23, 2014

Related U.S. Application Data

Provisional application No. 61/812,858, filed on Apr.
17, 2013.

Int. CI.

GOGF 17/15 (2006.01)

HO4L 5/14 (2006.01)
(Continued)

U.S. CL

CPC HO4L 5/1461 (2013.01); GOGF 9/30036

(2013.01); GO6F 17/15 (2013.01);

(Continued)

Field of Classification Search

CPC o HO4L 5/1461

USPC 708/420, 300-323
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6/1987 Van Der Mark
1/1994 Fox et al.

(Continued)

4,673,941 A
5,276,633 A

FOREIGN PATENT DOCUMENTS

2256937 A1 12/2010
20050064485 A 6/2005

(Continued)
OTHER PUBLICATIONS

EP
KR

Wegener, A.: “High-Performance Crest Factor Reduction Processor
for W-CDMA and OFDM Applications”, Radio Frequency Inte-
grated Circuits (RFIC) Symposium, Jun. 2006, 4 pages, IEEE, USA.

(Continued)

Primary Examiner — Tan V. Mai

(57) ABSTRACT

A processor is provided having an instruction set with a
sliding window non-linear convolution function. A processor
obtains a software instruction that performs a non-linear con-
volution function for a plurality of input delayed signal
samples. In response to the software instruction for the non-
linear convolution function, the processor generates a
weighted sum of two or more of the input delayed signal
samples, wherein the weighted sum comprises a plurality of
variable coefficients defined as a sum of one or more non-
linear functions of a magnitude of the input delayed signal
samples; and repeats the generating step for at least one
time-shifted version of the input delayed signal samples to
compute a plurality of consecutive outputs. The software
instruction for the non-linear convolution function is option-
ally part of an instruction set of the processor. The non-linear
convolution function can model a non-linear system with
memory, such as a power amplifier model and/or a digital
pre-distortion function.

21 Claims, 11 Drawing Sheets

o) n n n INDEX IS m
7% lslz'dl lslz'dl lslz'd 70
4°°\ 01 P] sdy 405-2 #05-3 05-4 055
4056
fa)
DN ® @ [wi®
40 P 0 2 L D -1
4057 430 w0 | w w N
Il
] T
3 Il
: \@ gl CO4T [Ful-C0
1| 40 RYTHE. i Dttt
405-81 [50~ M e Y
z'dv] 430!
: O 6k ®
20 0 [0 o
059 5 P b s D3
14.5] 20 40 Jei)
- [0 [0 (-0 [o
1 ol 4 w ol m : (\/ pe
430 P ™ e ~

US 9,363,068 B2

Page 2
(51) Int.CL 2002/0057735 Al 5/2002 Piirainen
HO04L 25/08 (2006.01) 2002/0062436 Al 5/2002 Van Hoolf etal.
GOSE 17750 500601 2002/0101835 Al 8/2002 Gerakoulis
(2006.01) 2003/0112904 Al 6/2003 Fuller et al.
H04B 1/62 (2006.01) 2003/0152165 Al 8/2003 Kondo et al.
HO4L 1/00 (2006.01) P0A00Ea30a A1 312001 Cortand
opelan
Ho4B 1/04 (2006.01) 2004/0180679 Al 9/2004 Porter
GO6F 9/30 (2006.01) 2004/0202137 Al 10/2004 Gerakoulis
H04L 25/03 (2006.01) 2004/0248516 Al 12/2004 Demir et al.
HO4L 27/36 (2006.01) 200510036013 A1 212008 i etal
uchi et al.
Z%IJ; 11%0205 88?2'88 2005/0108002 Al 5/2005 Nagai et al.
. 2006/0029149 Al 2/2006 Kim et al.
(52) US.CL P000/0L76500 A1 82006 Temedi
. Trive
CPC GOG6F 17/50 (2013.01); GOGF 17/5009 2006/0198466 AL 9/2006 Wright et al.
(2013.01); HO4B 1/0475 (2013.01); H04B 2006/0240786 Al 10/2006 Liu
1/525 (2013.01); H04B 1/62 (2013.01); H04J 2007/0005674 Al 1/2007 Sazegari et al.
11/004 (2013.01); HO4L 1/0043 (2013.01); %88;;8(1)3;7“7)2 i} ;‘ggg; gan
HO4L 25/03012 (2013.01); HO4L 25/03343 2008/0019427 Al 112008 Sr;alni%hetal
(2013.01); HO4L 25/08 (2013.01); HO4L 2008/0027720 Al 12008 Kondo et al.
27/367 (2013.01); HO4L 27/368 (2013.01); 2008/0030388 Al 2/2008 Muck et al.
HO4B 2001/0425 (2013.01) 2008/0056403 Al 3/2008 Wilson
2008/0074155 Al 3/2008 Jaklitsch
, 2008/0095265 Al 4/2008 Cai et al.
(56) References Cited 2008/0107046 Al 52008 Kangasmaa et al.
2008/0123770 Al 52008 Copeland
U.S. PATENT DOCUMENTS 2008/0144539 Al 6/2008 Sperlich et al.
2008/0187057 Al 82008 Qu
5381357 A 1/1995 Wedgwood et al. 2008/0192860 Al 82008 Harwood et al.
3416845 A~ 51995 Qun 2008/0219220 Al 9/2008 Gerakoulis
5,596,600 A 1/1997 Dimosc...cce.... GO1S 19/21 2008/0247487 Al 10/2008 Cai et al.
5706314 A 1/1998 Davisetal OB ool AL 102008 Wang etal.
’ ’ . : ent et al.
g’gig%g‘l‘ i ;‘;}ggg (T:flf:r“gtl A 2009/0006514 Al 12009 Kountouris
949, : 2009/0029664 Al 1/2009 Batruni
6,118,832 A 9/2000 Mayrargue et al. 2009/0079627 Al 3/2009 Sun etal
6,150,976 A 11/2000 Cooley 2009/0116576 Al 5/2009 Dowling
6,151,682 A 11/2000 van der Wal et al.
f Jer W 2009/0164542 Al 6/2000 Wau et al.
6,158,027 A 1272000 Bush etal 2009/0225899 Al 9/2009 Dent
6,163,788 A 122000 Chen et al. 2009/0245406 Al 10/2009 Moffatt et al.
6,446,193 Bl 9/2002 Alidina et al. 2009/0256632 Al 10/2009 Klingberg et al.
6,529,925 BL 3/2003 Schenk 2009/0257421 Al 10/2009 Nakashima et al.
030768 B 62003 Jquete 0100009505 A1 22010 Aveteseal”
’ ’ v et al.
6,587,514 Bl 7/2003 Wright et al. 2010/0067511 Al 3/2010 Peters
2’23@’53 g} 1%883 gfclf:cri;;fét " 2010/0098139 Al 4/2010 Braithwaite
643, : : 2010/0124257 Al 52010 Yahya
6,798,843 Bl 9/2004 Wright et al. 2010/0138463 Al 6/2010 Azadet et al.
6,801,086 Bl 10/2004 Chandrasekaran 2010/0138464 Al 6/2010 Azadet et al.
;’ﬁg’g% gé Sgggg g’ﬁ‘sl:;et . 2010/0138465 Al 6/2010 Azadet et al.
110, : 2010/0138468 Al 6/2010 Azadet et al.
7,133,387 B2 11/2006 Nakada 2010/0144333 Al 6/2010 Kiasaleh ef al.
7,167,513 B2 1/2007 Tsui et al. 2010/0158051 Al 6/2010 Hadzic et al.
7,242,725 B2 7/2007 Matsumolo et al. 2010/0198893 Al 82010 Azadet et al.
7,313,373 Bl 12;2007 Laskharian e{aL 2010/0198894 Al 82010 Azadet et al.
7,336,730 B2 2/2008 Auranen etal. 2010/0225390 Al 9/2010 Brown et al.
7,349,375 B2 3/2008 Gerakoulis 2010/0246714 Al 9/2010 Yang et al.
7,441,105 Bl 10;2008 Metzgen 2010/0255867 Al 10/2010 Ishii et al.
;’33;’232 g} 1%883 K/{V?égtm 2010/0273427 Al 10/2010 Mergen et al.
A77, 2010/0316112 Al 12/2010 Huang et al.
;’232"2‘33 g} lggggg hzfrlﬁ: wtal 20110002249 Al 12011 Gerakoulis
1606, arris ef al. 2011/0007907 Al 1/2011 Parketal.
7,656,837 B2 2/2010 Gerakoulis 2011/0025414 A1 22011 Wolfet al.
7,869,482 B2 1;2011 KUbOta_etalai 2011/0055303 Al 3/2011 Slavin
;’gg%fé g% 421/58“ ;g%%get : 2011/0059710 Al 3/2011 Cai et al.
924, 2011/0080902 Al 4/2011 Jang
aLo00 B2 122012 Wangetal 2011/0096824 Al 42011 Agazzi et al.
=20 ; 2011/0170421 Al 72011 Gerakoulis
8,583,152 B2 11/2013 Ishii et al.
$711988 B2 42014 Chen 2011/0255011 Al 10/2011 Gu etal.
8.831.133 B2 9/2014 Azadet et al. 2011/0268167 Al 11/2011 Sundstrt')m
8:8973388 B2 11/2014 Molina f al. 2011/0302230 Al 12/2011 Ekstrand
8,982,992 B2 3/2015 Azadet et al. 2012/0036174 Al 2/2012 Yu
2001/0043582 Al 11/2001 Nakada 2012/0087406 Al 4/2012 Lim et al.
2001/0050592 Al 12/2001 Wright et al. 2012/0093209 Al 4/2012 Schmidt et al.
2001/0050926 Al 12/2001 Kumar 2012/0106614 Al 5/2012 Kimetal.

US 9,363,068 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0188994 Al
2012/0280840 Al
2012/0295657 Al
2013/0007082 Al
2013/0022157 Al
2013/0044794 Al
2013/0070867 Al
2013/0114652 Al
2013/0114761 Al
2013/0114762 Al
2013/0117342 Al
2013/0195007 Al
2014/0016626 Al
2014/0064417 Al
2014/0072073 Al
2014/0075162 Al
2014/0086356 Al
2014/0086361 Al
2014/0086367 Al
2014/0108477 Al
2014/0313946 Al
2014/0314176 Al
2014/0314181 Al
2014/0314182 Al
2014/0316752 Al
2014/0317376 Al

7/2012 Palanki et al.
11/2012 Kyeong et al.
11/2012 Okazaki

1/2013 Elenes

1/2013 Hollevoet et al.

2/2013 Wenzel et al.

3/2013 To et al.

5/2013 Molina et al.

5/2013 Azadet et al.

5/2013 Azadet et al.

5/2013 Azadet et al.

8/2013 Mazurenko et al.

1/2014 Dai et al.

3/2014 Azadet

3/2014 Azadet et al.

3/2014 Azadet et al.

3/2014 Azadet et al.

3/2014 Azadet et al.

3/2014 Azadet et al.

4/2014 Azadet et al.
10/2014 Azadet
10/2014 Azadet
10/2014 Azadet
10/2014 Azadet
10/2014 Azadet
10/2014 Azadet

FOREIGN PATENT DOCUMENTS

WO 2007010331 Al 1/2007
WO 2007104362 Al 9/2007
WO 2008057584 A2 5/2008
WO 2011/058843 Al 5/2011
WO 2011/101233 Al 8/2011
WO 2013/063434 Al 5/2013
WO 2013/063440 Al 5/2013
WO 2013/063443 Al 5/2013
WO 2013/063447 Al 5/2013
WO 2013/063450 Al 5/2013
WO 2013/066756 Al 5/2013
OTHER PUBLICATIONS

Gopalan, R. et al.: “An Optimization Approach to Single-Bit Quan-
tization”, IEEE Transactions on Circuits and Systems I: Regular
Papers, Dec. 2009, pp. 2655-2668, vol. 56, Issue 12, IEEE, USA.
Gopalan, R. et al.: “On an optimum algorithm for waveform synthesis
and its applications to digital transmitters”, Wireless Communica-
tions and Networking Conference, Mar. 2005, pp. 1108-1113,vol. 2,
IEEE, USA.

Venkatamaran, J. et al.: “An All-Digital Transmitter with a 1-Bit
DAC”, IEEE Transactions on Communications, Oct. 2007, pp. 1951-
1962, vol. 55, Issue 10, IEEE, USA.

European Search Report received for the corresponding EP applica-
tion No. EP 12 84 3913.0, mailed on Jul. 9, 2015, 7 pages.
European Search Report received for the corresponding EP applica-
tion No. EP 12 84 2850.5, mailed on Jun. 25, 2015, 5 pages.

Li, “FIR Filtering Using Vector Transformation and Convolution
Processor”, 1990, IEEE, pp. 1223-1226.

Gopalan et al., “An Optimization Approach to Single-Bit Quantiza-
tion”, IEEE Transactions on Circuits and Systems—I: Regular
Papers, vol. 56, No. 12, Dec. 2009, pp. 2655-2668.

Venkataraman et al., “An All-Digital Transmitter with a 1-Bit DAC”,
IEEE Transactions on Communications, vol. 55, No. 10, Oct. 2007,
pp. 1951-1962.

Office action received for U.S. Appl. No. 13/661,295, mailed on Feb.
28, 2014, 8 pages.

Notice of Allowance received for U.S. Appl. No. 13/661,295, mailed
on Aug. 4, 2014, 7 pages.

Office action received for U.S. Appl. No. 13/661,351, mailed on May
23, 2014, 32 pages.

Office action received for U.S. Appl. No. 13/661,351, mailed on Nov.
14, 2014, 28 pages.

Office action received for U.S. Appl. No. 13/661,351, mailed on Mar.
26, 2015, 39 pages.

Office action received for U.S. Appl. No. 13/661,355, mailed on Jun.
4, 2015, 17 pages.

Office action received for U.S. Appl. No. 13/661,355, mailed on Feb.
6, 2015, 14 pages.

Office action received for U.S. Appl. No. 13/661,355, mailed on Sep.
25,2014, 12 pages.

Office action received for U.S. Appl. No. 13/661,357, mailed on Oct.
18, 2013, 7 pages.

Notice of Allowance received for U.S. Appl. No. 13/661,357, mailed
on May 13, 2014, 6 pages.

Office action received for U.S. Appl. No. 13/701,369, mailed on Jun.
24,2014, 16 pages.

Office action received for U.S. Appl. No. 13/701,374, mailed on May
29, 2015, 7 pages.

Office action received for U.S. Appl. No. 13/701,384, mailed on Dec.
31, 2014, 21 pages.

Office action received for U.S. Appl. No. 13/701,415, mailed on Aug.
1,2014, 11 pages.

Notice of Allowance received for U.S. Appl. No. 13/701,415, mailed
on Nov. 20, 2014, 5 pages.

Office action received for U.S. Appl. No. 14/090,555, mailed on Nov.
17,2014, 20 pages.

Office action received for U.S. Appl. No. 13/701,384, mailed on Jul.
16, 2015, 21 pages.

Office action received for U.S. Appl. No. 12/849,142, mailed on Jan.
4, 2015, 6 pages.

Notice of Allowance received for U.S. Appl. No. 12/849,142, mailed
on Apr. 26, 2013, 6 pages.

Notice of Allowance received for U.S. Appl. No. 14/090,555, mailed
on Aug. 12, 2014, 8 pages.

Office action received for U.S. Appl. No. 13/701,376, mailed on Jul.
22,2015, 9 pages.

Office action received for U.S. Appl. No. 13/701,397, mailed on Jul.
30, 2015, 15 pages.

Office action received for U.S. Appl. No. 13/566,146, mailed on Jan.
29, 2015, 6 pages.

Notice of Allowance received for U.S. Appl. No. 13/566,146, mailed
on Jun. 1, 2015, 13 pages.

Supplementary European Search Report for EP Patent Application
No. EP12846556, mailed on Jun. 24, 2015, 6 pages.
Supplementary European Search Report for EP Patent Application
No. EP12843512, mailed on Jun. 2, 2015, 6 pages.

Supplementary European Search Report for EP Patent Application
No. EP12842850, mailed on Jun. 25, 2015, 4 pages.
Supplementary European Search Report for EP Patent Application
No. EP12843913, mailed on Jul. 9, 2015, 6 pages.

Office action received for U.S. Appl. No. 14/230,622, mailed on Apr.
14, 2015, 22 pages.

Notice of Allowance received for U.S. Appl. No. 14/230,622, mailed
on Aug. 28, 2015, 13 pages.

Final Office Action received for U.S. Appl. No. 13/661,351, dated
Sep. 10, 2015, 15 pages of office action.

Non-final Office Action received for U.S. Appl. No. 13/701,374,
dated Aug. 24, 2015, 8 pages of office action.

Notice of Allowance received for U.S. Appl. No. 14/090,555, dated
Aug. 12, 2015, 8 pages.

Notice of Allowance received for U.S. Appl. No. 13/566,146, dated
Feb. 12, 2016, S pages.

* cited by examiner

U.S. Patent Jun. 7, 2016 Sheet 1 of 11 US 9,363,068 B2

DIGITAL PROCESSOR

FUNCTIONAL UNIT(S) FOR
SLIDING WINDOW NON-LINEAR
CONVOLUTION FUNCTION

3

| 120
LOOK-UP TABLE(S)

FIG. 2
X X X
I A N L2
r—--——ry———"—"~—" 1" "9 "~"F"7TF"7—F"7—"7/""7"7"°" """~ 1
210-1 | 210-2 | 210-3 210-N |
EE D P A
1

f(.) f(.) () -+ |f() i COEFFICIENTS
(e.g., FROM REGISTERS)

U.S. Patent Jun. 7, 2016 Sheet 2 of 11 US 9,363,068 B2

FIG. 3
30

for i=0;i<256;i+=16
i
Load 16 input samples (16b/16b complex)
Compute |x|~2 for 16 samples
Store 16 squared samples x2 (16b/16b complex)
i

1 cycle for 16 samples, load/mult/store pipelined in parallel

for m=0;m<20;m++

Load 128 coefficients for piecewise polynomial fm
for i=0;i<256;i+=16
i
Load 16 input samples at offset u(m)
Load 16 squared samples x2 at offset v(m)
Compute nonlinear function fm(x2(v(m)))
Multiply/accumulate x(u{m))*m

> 310

- 320

330

US 9,363,068 B2

Sheet 3 of 11

Jun. 7,2016

U.S. Patent

(~—4D
P-0%¥

¢-0rr —(D)
-0 —(D
=077 —)

G-G0¥

.vle_Jt
w g xaan Lo

/oe,
Vv 914

US 9,363,068 B2

Sheet 4 of 11

Jun. 7,2016

U.S. Patent

087 A3 S \oi
()55 oLy Yo | NES o .m L~ 0Lh :_m :
} w w/ w _ z
[4 %
: ‘ : 6-5S¥
087 g@‘l_ 08y ‘@‘l_ 0¥ A+Y|_ 087 u‘/l 087 xm@‘l_\ o
()% oL (Y'Y Lot OFapor | MREY o
f I f - » y
‘ ‘ Fo===-t- 987 - 08F Y _H_H_._r _
08y <@‘|_ 087 s@‘l_ 08y +uL_p\ FAS 08¥ u‘lx o] sy
|||||| Fe=T=====n A
] ¢ | ¢ I] / ¢
Sm: 0L Cv : I~ 0L m Cm : so#_ CN __ ~0/Y ,2,_ :
} } b - i z
0p-
e ELY R
r====--"- =1
(uh~——F)= Ot T
G-G8Y -G8 | c-Cay |2-S8Y =58
“ i |-GL
S-SLy 7-GLv y-Gey 1g-Gy b §-GS E-SLY |-GG 1| o0
- | | -
|y S :.N_Mr | s.N_MZ 2y S s.N_Mf £ o5y
- - aliall LTl s adall g0 ! :
U U U_ g8y L L gy 9l

US 9,363,068 B2

Sheet 5 of 11

Jun. 7,2016

U.S. Patent

N-02G «~ (1-N+u)k

|
|
|
NOLLONYISNI |
NOLLNTOANOD —
YYINTT-NON _
m
|
| |
|
| |
| |
| |
|
e	!				
GIg o	!				
Nl _ .					
01g N | L X
B » =]

G 9Id

US 9,363,068 B2

Sheet 6 of 11

O——D>—@ T
\/ \/ \/ Auv mw .nw&wmﬂ
\m \m \m \m 009
0% 0% 0% 0% /S
r-029 Le-079 1z7-029 4-029
® ® ® ®
(' 0% 04 04
Ly-029 Le-029 1z-029 Y-029
OO T TOT—O
0" 04 04 04

Jun. 7,2016

U.S. Patent

579
Y-0z9) [le-oz9f [lz-oze| [Ui-0z9 &-J
0

m m_sE
7 SHYL
: ~029 (1-u) H_
(L-u)x (9-u)x (G-u)x (p-u)x (g-u)x (T-u)x :-5 (u)x

-l G-uyl (G-l H(e-upl (G-u] [(-u |(1+ux|

7
K
‘ﬁ@

—
N
N
S
—
S”
o~
S
—
e
-

. Patent Jun. 7, 2016 Sheet 7 of 11 US 9,363,068 B2

——
T
= Y Y Y Y
>
—
T
—_— =
r~
1
=
~—
>
——
T
—_— =
—— -
w0 > —
I N
5 3=
_ ~¥
I @
— o~ \
T ~
1
u I —
1 (- (-
| = ~F Lr]
=z ~ ~
= ~t+ ~
I @ @
= = S ‘
1 M~ ~~
<«
~t >
~— —~— —~—
| L - S e
= ~t r
~ ~ ~ ~
—_ ~t L] o~
I @ @ @
= N L N L N |
; M~ ~ ~
—_ =
M X — fa))
] S _';’ \—‘:‘ [
;, ~ ~ X S ~
= ~t+ N o~ -~
. @ D3 @ @
=S S S [&
"rl’l\ ™~ ™~ r~
=&
(=]
' = = =
\i/ ~ — ~ ~
el N o~ -
1 G|_] GFQI @
/\8 \8 b N
‘T"\ P~ ™~
- =
— 3
1 — [
o~ —
\:/ i o
o i
—~ o~ b SN
= —
= _
—_— <
c <
= Ve Uttty [y
™~

[SR R ——]

US 9,363,068 B2

Sheet 8 of 11

Jun. 7,2016

U.S. Patent

-)= @ D= +
L/ \/ \L/ nHv mw .anmN
\m \m \m \m 008
0 0% 0% 0% /S
Uy-028 1078 17-078 T}-0z8
: QOO
0 0% 0y 04
Ly-078 Le-0z8 1z7-018 Y-0z8
, OO
0" 0% 04 04
Ly-0z8 te-0t8 tz-08 L-0z8 q.hmmm
‘ T TOTTOT 7O !
. . L - SWYIL
WH WH WH LA 1| (w-w)e
(" (% 04 04 Sl
Ty-0z8| [Te-oca| [fz-oz8| [U-0z8 |(1-u)a]
(8-u)x (L-u)x (9-u)x (g-u)x (y-ux (g-u)x (z-u)x (1-u)x (u)x v
((-ux| [(s-ux] [(-ux [(e-u] o (-ux] ()] |(u)x| |(1+u)x]

US 9,363,068 B2

Sheet 9 of 11

Jun. 7,2016

U.S. Patent

(g-u)k SLINN TYNOILONNA TYNOIVIQ Q3LVAOILNI 0001
L 4
(7-u}k < SLINN TYNOLLONNS TYNOOVIQ Q3LVHOILNI 000}
—e
(1-upk SLINN TYNOLLONNA T¥NOOVIQ QILYH9ILNI 000}
L 4
(Uh < SLINN TYNOLLONNA TYNOOVIQ Q3LVH9IINI 000}
(g-u)x | (L-u)x (9-upx | (g-upx | (p-ux | (g-upx | (z-u)x ()-u)x (u)x SHY3L (w-u)z

|8-u)x I(z-uxl [(o-upx| (s-upe] (Cr-ux|[(e-ulk((e-ul (Qe-up] (] (x| ——shiEL (-2

S
- 6 OId

US 9,363,068 B2

Sheet 10 of 11

Jun. 7,2016

U.S. Patent

0! 9Id m.---------------------------.x. .. J_
m T _
| at |
m 0] [0s] |[om |
m “ m
P S |

~— o501 7 |

] 0% ([0=] |[0% |

m “ m

| + |

| z |

m 0% 0% 0%] o5l |

m X1, 0201 m

“ S _

“ I 2w

oo L0 JL05] (0% =00 |

(g-u)x (£-u)x (9-u)x (g-u)x (p-u)x (g-u)x (z-u)x (1-u)x (u)x SHu3L(w-u)z
(g-u)x| (-ulx[[(-upx[(sl [(r-upx] o (g-ux] [(e-u) (G-u] o [(u] _:ExT/_m&w%_

US 9,363,068 B2

Sheet 11 of 11

Jun. 7,2016

U.S. Patent

0611

DN

011

Ma AJONIN S30NA3Y
91 ~ N 4L 438N

0b1l

US 9,363,068 B2

1
VECTOR PROCESSOR HAVING
INSTRUCTION SET WITH SLIDING
WINDOW NON-LINEAR CONVOLUTIONAL
FUNCTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority to U.S. Patent Pro-
visional Application Ser. No. 61/812,858, filed Apr. 17,2013,
entitled “Digital Front End (DFE) Signal Processing,” incor-
porated by reference herein.

The present application is related to PCT Patent Applica-
tion No. PCT/US12/62179, filed Oct. 26, 2012, entitled
“Software Digital Front End (SoftDFE) Signal Processing;”
PCT Patent Application No. PCT/US12/62182, filed Oct. 26,
2012, entitled “Vector Processor Having Instruction Set With
Vector Convolution Function For FIR Filtering;” PCT Patent
Application No. PCT/US12/62186, filed Oct. 26, 2012,
entitled “Processor Having Instruction Set with User-Defined
Non-Linear Functions for Digital Pre-Distortion (DPD) and
Other Non-Linear Applications,” and U.S. patent application
Ser. No. 12/849,142, filed Aug. 3, 2010, entitled “System and
Method for Providing Memory Bandwidth Efficient Correla-
tion Acceleration,” each incorporated by reference herein.

FIELD OF THE INVENTION

The present invention is related to digital signal processing
techniques and, more particularly, to techniques for digital
processing of non-linear functions.

BACKGROUND OF THE INVENTION

Digital signal processors (DSPs) are special-purpose pro-
cessors utilized for digital processing. Digital signal process-
ing algorithms typically require a large number of mathemati-
cal operations to be performed quickly and efficiently on a set
of data. DSPs thus often incorporate specialized hardware to
perform software operations that are often required for math-
intensive processing applications, such as addition, multipli-
cation, multiply-accumulate (MAC), and shift-accumulate.
Such basic operations can be efficiently carried out utilizing
specialized high-speed multipliers and accumulators.

A vector processor implements an instruction set contain-
ing instructions that operate on vectors (i.e., one-dimensional
arrays of data). The scalar DSPs, on the other hand, have
instructions that operate on single data items. Vector proces-
sors offer improved performance on certain workloads.

PCT Patent Application No. PCT/US12/62186, filed Oct.
26, 2012, entitled “Processor Having Instruction Set with
User-Defined Non-Linear Functions for Digital Pre-Distor-
tion (DPD) and Other Non-Linear Applications,” discloses a
processor that supports non-linear functions that include one
or more parameters specified by a user, such as filter coeffi-
cient values or values from a look-up table (LUT). While the
disclosed techniques have significantly improved the perfor-
mance of software implementations of DPD and other non-
linear applications, a need remains for digital processors,
such as DSPs and vector processors, having an instruction set
that supports a sliding window non-linear convolution func-
tion.

SUMMARY OF THE INVENTION

Generally, a processor is provided having an instruction set
with a sliding window non-linear convolution function.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to one aspect of the invention, a processor obtains
at least one software instruction that performs at least one
non-linear convolution function for a plurality of input
delayed signal samples. In response to the at least one soft-
ware instruction for the at least one non-linear convolution
function, the processor performs the following steps: gener-
ating a weighted sum of two or more of the input delayed
signal samples, wherein the weighted sum comprises a plu-
rality of variable coefficients defined as a sum of one or more
non-linear functions of a magnitude of the input delayed
signal samples; and repeating the generating step for at least
one time-shifted version of the input delayed signal samples
to compute a plurality of consecutive outputs, wherein the at
least one software instruction for the at least one non-linear
convolution function is part of an instruction set of the pro-
Ccessor.

The variable coefficients defined by a non-linear function
of'amagnitude ofthe input delayed signal samples are option-
ally implemented using one or more look-up tables. The
non-linear convolution function can model a non-linear sys-
tem with memory, such as a power amplifier model and/or a
digital pre-distortion function. The non-linear convolution
function is optionally implemented using one or more look-
up tables having linear and/or polynomial interpolation.

A more complete understanding of the present invention,
as well as further features and advantages of the present
invention, will be obtained by reference to the following
detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11s aschematic block diagram of an exemplary digital
processor that incorporates features of the present invention;

FIG. 2 is a schematic block diagram of an exemplary vec-
tor-based digital processor that processes one or more num-
bers simultaneously in accordance with an embodiment of the
present invention;

FIG. 3 illustrates exemplary pseudo code to implement a
DPD function in software on a vector processor of 16 com-
ponent vectors using a user-defined non-linear instruction
hj m,is

FIGS. 4A and 4B are graphical illustrations of exemplary
functional block diagrams;

FIG. 5 illustrates a sliding window non-linear convolution
function that incorporates features of the present invention;

FIGS. 6 through 8 are graphical illustrations of exemplary
functional block diagrams that compute diagonal terms,
lower diagonal terms and upper diagonal terms, respectively;

FIG. 9 is a graphical illustration of an exemplary functional
block diagram that computes the diagonal, upper diagonal
and lower diagonal terms in a single instruction call;

FIG. 10 is a graphical illustration of an exemplary inte-
grated diagonal functional unit of FIG. 9 in further detail; and

FIG. 11 illustrates an alternate asymmetric embodiment of
the invention, where an exemplary input is processed by an
asymmetric array of functional units using a plurality of over-
lapping windows and the output comprises a vector.

DETAILED DESCRIPTION

Aspects of the present invention provide digital processors,
such as DSPs and vector processors, having an instruction set
that supports a sliding window non-linear convolution func-
tion. As used herein, the term “digital processor” shall be a
processor that executes instructions in program code, such as
a DSP or a vector processor. It is further noted that the dis-
closed complex exponential function can be applied for val-

US 9,363,068 B2

3

ues of x that are scalar or vector inputs. The present invention
can be applied, for example, in handsets, base stations and
other network elements.

FIG.11s aschematic block diagram of an exemplary digital
processor 100 that incorporates features of the present inven-
tion. The exemplary digital processor 100 can be imple-
mented as a DSP or a vector processor. As shown in FIG. 1,
the exemplary digital processor 100 includes one or more
functional units 110 for a sliding window non-linear convo-
Iution function. In addition, the digital processor 100 com-
prises one or more look-up tables 120 that store, for example,
discrete points that define the non-linear function.

Generally, if the digital processor 100 is processing soft-
ware code that includes a predefined instruction keyword
corresponding to a sliding window non-linear convolution
function and any appropriate operands for the function, the
instruction decoder must trigger the appropriate functional
units 110 that are required to process the instruction. It is
noted that a functional unit 110 can be shared by more than
one instruction.

Generally, aspects of the present invention extend conven-
tional digital processors to provide an enhanced instruction
set that supports sliding window non-linear convolution func-
tions. The digital processor 100 in accordance with aspects of
the present invention receives at least one software instruction
that performs a non-linear convolution function for a plurality
of input delayed signal samples. In response to the software
instruction for the non-linear convolution function, the digital
processor 100 generates a weighted sum oftwo or more of the
input delayed signal samples. The weighted sum comprises a
plurality of variable coefficients defined as a sum of one or
more non-linear functions of a magnitude of the input delayed
signal samples. The weighted sum is calculated for at least
one time-shifted version of the input delayed signal samples
to compute a plurality of consecutive outputs.

The non-linear convolution function can be expressed as
follows:

-1

NEEDY

=0 m=0

M-1
Sim(x0 + k = D)x(+ k — m),

M

0<k=N-1.

The variables in equation (1) are defined further below in
conjunction with FIG. 5. A special case of the non-linear
convolution function can be expressed as follows:

M-1 M-1 2)
Yorky= 3" Y fumllxa ek —DDxtn + k= m),
=0 m=0

0<k=N-1.

Thus, the non-linear convolution function computes mul-
tiple non-linear outputs, recognizing data re-use due to a
sliding window type of operation. In the above sums, L.xM
LUTs need to be processed. In practice, if the LxM number
exceeds the capability of the processor instruction, only a
subset (e.g., 8) are processed for each cycle. To produce the
complete sum, additional passes are performed on the input
samples block and accumulated over previous results to pro-
duce the final values of the output signal, y.

The disclosed sliding window non-linear convolution
functions may be employed, for example, for digital pre-
distortion (DPD) and other non-linear signal processing.

10

15

20

25

30

35

40

45

50

55

60

65

4

As indicated above, PCT Patent Application No. PCT/
US12/62186, filed Oct. 26, 2012, entitled “Processor Having
Instruction Set with User-Defined Non-Linear Functions for
Digital Pre-Distortion (DPD) and Other Non-Linear Appli-
cations,” discloses a processor that supports non-linear func-
tions that include one or more parameters specified by a user,
such as filter coefficient values or values from alook-up table.
Each execution of the user-specified non-linear function pro-
duces a single output.

In addition, PCT Patent Application No. PCT/US12/
62182, filed Oct. 26, 2012, entitled “Vector Processor Having
Instruction Set With Vector Convolution Function For FIR
Filtering” discloses a vector processor having an instruction
set with a vector convolution function. Among other benefits,
the disclosed vector processor computes multiple outputs in a
single cycle. Generally, a disclosed vector convolution func-
tion computes the convolution of N-bit complex data (N/2-bit
real and N/2-bit imaginary) and complex antipodal data (e.g.,
coefficients). The exemplary vector convolution function
receives an input vector of N1+N2-1 input samples and pro-
cesses time shifted versions of N1 samples of the input vector
N1 and fixed coefficients, and for each time shifted-version
(each time lag) produces an FIR output value. An output
vector is comprised of the N2 output values.

Aspects of the present invention recognize that the time
shifted versions of input samples can be stored in a register
and re-used multiple times in a single cycle, rather than
reloading the input values from memory multiple times.
According to one aspect of the invention, multiple consecu-
tive outputs are computed using the time shifted input
samples. According to another aspect of the invention, the
coefficients are non-linear functions of the input magnitude
and can be implemented, for example, using look-up tables.

FIG. 2 is a schematic block diagram of an exemplary vec-
tor-based digital processor 200 that processes one or more
numbers simultaneously in accordance with an embodiment
of the present invention. Generally, the vector-based imple-
mentation of FIG. 2 increases performance by reducing a
number of operations per second, relative to a scalar imple-
mentation, by performing more operations concurrently
using less instructions (e.g., MAC and other non-linear func-
tions). Thus, the vector-based digital processor 200 contains
plural functional units 210-1 through 210-N for user-defined
non-linear functions f(.). For example, a dual digital proces-
sor 200 contains two functional units 210-1 and 210-2 thatare
capable of performing two independent user-defined non-
linear function operations concurrently.

Generally, the vector-based digital processor 200 pro-
cesses a vector of inputs X and generates a vector of outputs,
y. The exemplary vector-based digital processor 200 is shown
for a 16-way vector processor instruction. In one exemplary
implementation having 32 segments, for coefficients repre-
sented using four cubic polynomial approximation coeffi-
cients, in the look-up table there are 128 complex entries (16
bit complex and 16 bit real). In a further variation having 128
segments, and one coefficient per segment, there are 128
complex coefficients for linear interpolation (16 bit complex
and 16 bit real).

The exemplary vector-based digital processor 200 thus
performs 16 such non-linear operations according to the fol-
lowing equation, and linearly combines them in a single cycle
at each call of the vector non-linear instruction computing as
an example the non-linear polynomial function:

US 9,363,068 B2

19

=" ax

k=0

It is noted that in the more general case, different functions
may be applied to each component of the vector data of the
vector processor.

As shown in FIG. 2, the functional units 210 receive a
user-specification, such as the look-up tables or coefficients,
from memory for storage in a register.

Non-Linear Filter Implementation of Digital Pre-Distorter

A digital pre-distorter can be implemented as a non-linear
filter using a Volterra series model of non-linear systems. The
Volterra series is a model for non-linear behavior in a similar
manner to a Taylor series. The Volterra series differs from the
Taylor series in its ability to capture “memory” effects. The
Taylor series can be used to approximate the response of a
non-linear system to a given input if the output of this system
depends strictly on the input at that particular time. In the
Volterra series, the output of the non-linear system depends
on the input to the system at other times. Thus, the Volterra
series allows the “memory” effect of devices to be captured.

Generally, a causal system with memory can be expressed
as:

YO _Th(T)x(=t)dv

In addition, a weakly non-linear system without memory
can be modeled using a polynomial expression:

YO "D

The Volterra series can be considered as a combination of
the two:

y(l)ZE}Flek(l)

YO 7 TRy, .

Inthe discrete domain, the Volterra Series can be expressed as
follows:

L Tx(t-t)dt

Y (”):ElFlK.Vk(”)

)’(”):Eml:oMfl L2 h(my, ..., m),_ Fx(n-

my)

=0

The complexity of a Volterra series can grow exponentially
making its use impractical in many common applications,
such as DPD. Thus, a number of simplified models for non-
linear systems have been proposed. For example, a memory
polynomial is a commonly used model:

=

-1
he(m, ... mx*(n—m)

ymp(n)

i

~
Il

~
L
=

FgmX(r — m)|x(n — m)|*

a~
i
=]
3
I
=]

Another simplified model referred to as a Generalized
Memory Polynomial Model, can be expressed as follows
(where M indicates the memory depth and K indicates the
polynomial order):

M-1

NOEDY

m=0

=

1 k-1
Pyl = D x(n = m)

I
=3

k=

20

25

30

35

40

45

50

55

60

65

6
-continued
M=l M-I P
MO Z Z Xr=m) " b lxtn = DIt
m=0 1=0 k=0

An equivalent expression of the Generalized Memory
Polynomial with cross-products, can be expressed as follows:

-1 M-1

M
Y= 3" 3 i —m): fuillxtn— DD

=0 =

®

where:

k-1 (€3]
Fnillxtn =D = 3" hmyletn = DIf

k=0

where f(X) is a non-linear function having one or more user-
specified parameters assumed to be accelerated in accordance
with an aspect of the invention using the user-defined non-
linear instruction vec_nl, discussed below. It is noted that
other basis functions other than x* for non-linear decomposi-
tion are possible.

As discussed hereinafter, the user-defined non-linear
instruction f,,; can be processed, for example, by a vector
processor, such as the vector processor of FIG. 2. The £, , is
an mx] array of non-linear functions. Each non-linear func-
tion can have a user-specified parameter, such a look-up table
or coefficients. The look-up table can be a polynomial
approximation of the user-defined non-linear instruction f,,, ;.
In one exemplary embodiment, the look-up table for each
user-defined non-linear instruction f,, ; in the mxI array can
be stored in memory and loaded into a register when the
instruction is processed by the vector processor 200 (or even
directly loaded from memory into the non-linear convolution
functional unit). The input samples can then be evaluated on
the individual non-linear instruction f,, ; in the mx] array.

FIG. 3 illustrates exemplary pseudo code 300 to implement
a DPD function in software on a vector processor of 16
component vectors using a user-defined non-linear instruc-
tion £, ; of equation (3). The exemplary pseudo code 300
comprises a first portion 310 to compute a magnitude of the
input X. In line 320, the look-up table for an individual non-
linear instruction f,,,; in the mxl array can be loaded into a
register. Thereafter, the exemplary pseudo code 300 com-
prises a portion 330 to implement equation (3) (e.g., input
samples, perform a square operation on the samples, compute
the non-linear function and then multiply accumulate the
result).

FIG. 4A is a graphical illustration of an exemplary func-
tional block diagram 400 that implements equation (3). In the
exemplary embodiments described herein, IxI?* is used
instead of IxI*. As shown in FIG. 4A, the exemplary circuit
400 comprises a plurality of delay elements, such as delay
elements 405-1 through 405-5 to generate the x(n-m) term of
equation (3) and delay elements 405-6 through 405-9 to gen-
erate the Ix(n-1)|* term of equation (4) by delaying the output
of'a squaring operation 410. In addition, the exemplary func-
tional block diagram 400 comprises an array of functional
units 420-1,1 through 420-4,4 that receive the appropriate
Ix(n-1)I* term and implement equation (4). The exemplary
functional block diagram 400 also comprises a plurality of
multipliers (x) that receive the appropriate x(n-m) term and
multiply it with the output of the corresponding m, functional
unit 420. The outputs of the multiplication in each row are

US 9,363,068 B2

7
added by adders (+) 430 and the outputs of each adder 430 in
a given row are summed by a corresponding adder 440 to
generate the output y(n).

FIG. 4A also illustrates a diagonal line 442 that is discussed
further below in conjunction with FIGS. 6-8.

FIG. 4B provides a graphical illustration 450 of an alter-
nate exemplary functional block diagram 450 that imple-
ments equation (3) with a reduced number of multiply opera-
tions. As shown in FIG. 4B, the exemplary circuit 450
comprises a plurality of delay elements, such as delay ele-
ments 455-1 through 455-5 to generate the x(n-m) term of
equation (3) and delay elements 455-7 through 455-9 to gen-
erate the Ix(n—1)I? term of equation (4) by delaying the output
of'a squaring operation 460. In addition, the exemplary func-
tional block diagram 450 comprises an array of functional
units 470-1,1 through 470-4.4 that receive the appropriate
[x(n-1)I*> Or term and implements equation (4). Adders 480
compute the non-linear gains (sum of non-linear functions of
magnitude of the input).

The exemplary functional block diagram 450 also com-
prises a plurality of multipliers (x) 475 that receive the appro-
priate x(n-m) term and multiply it with the output of the
summed output of a column of corresponding m,1 functional
units 470. In this manner, the non-linear gains from adders
480 are applied to the input data (complex multiply-accumu-
late (CMAC) operations). The outputs of the multiplication
added by adders (+) 485 to generate the output y(n).

FIG. 4B also illustrates a diagonal line 482 that is discussed
further below in conjunction with FIGS. 6-8.

Sliding Window Non-Linear Convolution Functions

As indicated above, aspects of the present invention rec-
ognize that the time shifted versions of input samples can be
stored in a register and re-used multiple times in a single
cycle, rather than reloading the input values from memory
multiple times. Similarly, a given functional unit 470 of the
exemplary functional block diagram 450 of FIG. 4B, such as
the exemplary functional unit highlighted using a dashed box
484, and the associated exemplary delay, multiplier and adder
circuitry highlighted using dashed boxes 486 and 488, are
applied to 16 consecutive samples in a single cycle in the
exemplary embodiment.

As discussed hereinafter, aspects of the present invention
recognize that performance can be further improved relative
to the implementations of FIGS. 4A and 4B by providing a
sliding window non-linear convolution instruction, where a
subset of the functional units are processed for each of mul-
tiple iterations. For example, one row, column or diagonal
(four functional units) of the Generalized Memory Polyno-
mial (GMP) matrix of FIGS. 4A and 4B can be processed in
each of four iterations. While it takes multiple iterations to
process the complete GMP matrix 400, 450, each cycle com-
putes N outputs with a reduced number of memory accesses,
relative to the embodiments of FIGS. 4A and 4B. The coef-
ficients for the nxm functional units that are active in a given
iteration are loaded from one or more look-up tables (LUTs).

FIG. 5 illustrates an exemplary non-linear convolution
function 500 that incorporates features of the present inven-
tion. The exemplary non-linear convolution function 500
implements equation (1). Generally, the exemplary non-lin-
ear convolution function 500 computes the non-linear convo-
Iution of input data samples 510. M+N-1 input data samples
510 are needed to produce N output samples 520 N at a time
by the vector processor 200. The exemplary non-linear con-
volution function 500 processes the input samples in chunks

10

15

20

25

30

35

40

45

50

55

60

65

8

505 corresponding to the memory depth M of the digital
pre-distorter (DPD) or other non-linear system.

The non-linear convolution function 500 typically receives
the input data samples 510 and processes time shifted ver-
sions of the input data samples 510, the “magnitude squared”
versions 515 of the input data samples 510 and coefficients.
For each time shifted-version (each time lag) along axis 530,
the exemplary non-linear convolution function 500 produces
an output value 520 in accordance with equation (1).

In the exemplary embodiment of FIG. 5, the input vector
510 comprises N1+N2-1 samples of real or complex data
(e.g., 32-bit real and 32-bit imaginary) and there N2 time
shifted versions 220 having N1 samples (16-bit real and
16-bit imaginary) that get convoluted with the coefficients.
The coeflicients can each be binary values (e.g., or 2 bit, 4 bit,
etc).

Itis noted that FIG. 5 illustrates the case where L=M. In the
general case where [and M are different, M+N-1 samples of
x, and L+N-1 samples of Ix|? are needed. It is noted that L
indicates the number of rows in the arrays of FIGS. 4 and 5
and M indicates the number of columns in the array.

FIG. 6 is a graphical illustration of an exemplary functional
block diagram 600 that computes the diagonal terms of equa-
tion (3) associated with line 442 of FIG. 4A using matrix
operations (nxm functional units at once). Thus, the exem-
plary functional block diagram 600 comprises functional
units associated with the diagonal line 442 of FIG. 4A. The
exemplary embodiment processes diagonal, lower diagonal
and upper diagonal terms. It is noted, however, that in practice
the matrix may be sparse and the non-linear polynomials that
are grouped do not have to follow a diagonal, row or column
pattern but may be comprised of any group from the larger set
of polynomials.

The exemplary embodiment of FIG. 6 recognizes that the
GMP matrix is a sparse matrix where the non-zero terms are
near the diagonal. In further exemplary variations, the
selected sub-set of functional units that are processed in a
given iteration can be associated with a given row or column.
The exemplary functional block diagram 600 corresponds to
one diagonal slice of the sliding window non-linear convolu-
tion function out of a total three diagonal, upper diagonal and
lower diagonal slices.

The exemplary circuit 600 comprises a plurality of delay
elements (not shown) to generate the x(n-m) terms of equa-
tion (3) and delay elements (not shown) to generate the Ix(n-
D)l term of equation (4). In addition, the exemplary functional
block diagram 600 comprises a plurality of functional units
f.() through f,() 620-1 through 620-4 that receive the
appropriate |x(n-1)| term and implement equation (4). The
exemplary functional block diagram 600 also comprises
exemplary circuitry 625 comprising a multiplier and an adder.
The multipliers (x) in each circuit 625 receives the appropri-
ate x(n—-m) term and multiply it with the output of the corre-
sponding functional unit f,() through f,() 620-1 through
620-4. The outputs of the multiplication in each row are added
by the adder in the circuit 625 and the outputs of each adder in
a given row are summed to generate the diagonal terms ofthe
output y(n).

Aspects of the present invention thus recognize that the
time shifted versions of input samples can be stored and
re-used multiple times in a single cycle, rather than reloading
the input values from memory multiple times. For example,
as shown in FIG. 6, the time-shifted sample x(n-3) is applied
to four different multipliers and can be re-used four times.

In the exemplary embodiment of FIG. 6, there are M=4
different look-up tables (columns) and N=4 different outputs
(rows) per clock cycle. As shown in FIG. 6, each successive

US 9,363,068 B2

9

iteration is time-shifted by one. Thus, the second row, for
example, computes the second output.

FIG. 7 is a graphical illustration of an exemplary functional
block diagram 700 that computes the lower diagonal terms of
equation (3) associated with diagonal line 442 (FIG. 4A)
using matrix operations (nxm functional units at once). The
lower diagonal terms are shifted down by one relative to the
diagonal line 442 (FIG. 4A).

Generally, the exemplary functional block diagram 700 of
FIG. 7 receives the same inputs as the exemplary functional
block diagram 600 of FIG. 6, time shifted by one. Thus, the
exemplary circuit 700 comprises a plurality of delay elements
(not shown) to generate the x(n-m) terms of equation (3) and
delay elements (not shown) to generate the Ix(n-1) term of
equation (4). In addition, the exemplary functional block
diagram 700 comprises a plurality of functional units f,()
through f,() 720-1 through 720-4 that receive the appropriate
[x(n-1)| term and implement equation (4). The exemplary
functional block diagram 700 also comprises exemplary cir-
cuitry 725 comprising a multiplier and an adder. The multi-
pliers (x) in each circuit 725 receives the appropriate x(n—m)
term and multiply it with the output of the corresponding
functional unit f, () through f,() 720-1 through 720-4. The
outputs of the multiplication in each row are added by the
adder in the circuit 725 and the outputs of each adder in a
given row are summed to generate the lower diagonal terms of
the output y(n).

FIG. 8 is a graphical illustration of an exemplary functional
block diagram 800 that computes the upper diagonal terms of
equation (3) associated with diagonal line 442 (FIG. 4A)
using matrix operations (nxm functional units at once). The
upper diagonal terms are shifted up by one relative to the
diagonal line 442 (FIG. 4A).

Generally, the exemplary functional block diagram 800 of
FIG. 8 receives the same inputs as the exemplary functional
block diagram 600 of FIG. 6, time shifted by two. Thus, the
exemplary circuit 800 comprises a plurality of delay elements
(not shown) to generate the x(n-m) terms of equation (3) and
delay elements (not shown) to generate the Ix(n-1) term of
equation (4). In addition, the exemplary functional block
diagram 800 comprises a plurality of functional units f,()
through £ ,() 820-1 through 820-4 that receive the appropriate
[x(n-1)| term and implement equation (4). The exemplary
functional block diagram 800 also comprises exemplary cir-
cuitry 825 comprising a multiplier and an adder. The multi-
pliers (x) in each circuit 825 receives the appropriate x(n—m)
term and multiply it with the output of the corresponding
functional unit f, () through f,() 820-1 through 820-4. The
outputs of the multiplication in each row are added by the
adder in the circuit 825 and the outputs of each adder in a
given row are summed to generate the upper diagonal terms of
the output y(n).

The outputs of the exemplary functional block diagrams
600, 700, 800 of FIGS. 6-8 are accumulated to generate the
final output y(n).

FIG.9is a graphical illustration of an exemplary functional
block diagram 900 that computes the diagonal, upper diago-
nal and lower diagonal terms of equation (3) in a single
instruction call. The exemplary circuit 900 comprises a plu-
rality of delay elements (not shown) to generate the x(n—m)
terms of equation (3) and delay elements (not shown) to
generate the Ix(n-1)l term of equation (4). In addition, the
exemplary functional block diagram 900 comprises a plural-
ity of integrated diagonal functional units 1000, as discussed
further below in conjunction with FIG. 10, that each generate
one output, y, in a single cycle.

40

45

10

For an exemplary 4x4 matrix that processes diagonal,
upper diagonal and lower diagonal terms, there are 3xMxN
LUTs, MxN adders and MxN MACs. There are 3xN table
inputs (e.g., M=8—24 different tables).

FIG. 10 is a graphical illustration of an exemplary inte-
grated diagonal functional unit 1000 of FIG. 9 in further
detail. As shown in FIG. 10, the exemplary integrated diago-
nal functional unit 1000 comprises a plurality of delay ele-
ments (not shown) to generate the x(n-m) terms of equation
(3) and delay elements (not shown) to generate the Ix(n-1)!
term of equation (4). The exemplary integrated diagonal func-
tional unit 1000 generates one output, y, in a single cycle.

The functional units in a given row of the integrated diago-
nal functional unit 1000, such as the three functional units
1010 in the first row, correspond to the diagonal, upper diago-
nal and lower diagonal terms. The functional units in a given
row of the integrated diagonal functional unit 1000, such as
the three functional units 1010 in the first row, receive the
appropriate [x(n-1)| term and implement equation (4).

Inaddition, the output of each functional unitin a given row
of the integrated diagonal functional unit 1000, such as the
output of the three functional units 1010 in the first row, are
summed by a first adder 1020. The summed output of adder
1020 is applied to a multiplier 1030. The multiplier 1030
receives the appropriate x(n-m) term and multiplies it with
the summed output of the adder 1020. The outputs of the
multiplication in each row are added by an adder 1050 that
generates the output y(n). The output y(n) comprises one slice
of'the sliding window non-linear convolution function (out of
four slices).

An exemplary implementation employing M=8 columns
by N=8 rows of functional units provides a symmetrical struc-
ture. An alternate embodiment of the invention recognizes
that an asymmetrical structure may optimize memory band-
width in certain situations. FIG. 11 illustrates an alternate
asymmetric embodiment of the invention, where the exem-
plary input 1110 comprising a 2x4 matrix is processed by an
asymmetric 4x16 array 1130 of functional units, and the
output 1120 comprises a 4 element vector, using a plurality of
overlapping windows 1150. In further implementations, it
may be beneficial to have the asymmetry with N greater than
M, depending on the use case.

The embodiments employing asymmetrical structures rec-
ognize that an 8x8 convolution may not be optimized for a
16-way single instruction, multiple data (SIMD) operation.
Thus, the exemplary embodiment of FIG. 11 employs a
4-way SIMD type of architecture to reduce base processor
complexity.

CONCLUSION

While exemplary embodiments of the present invention
have been described with respect to digital logic blocks and
memory tables within a digital processor, as would be appar-
ent to one skilled in the art, various functions may be imple-
mented in the digital domain as processing steps in a software
program, in hardware by circuit elements or state machines,
or in combination of both software and hardware. Such soft-
ware may be employed in, for example, a digital signal pro-
cessor, application specific integrated circuit or micro-con-
troller. Such hardware and software may be embodied within
circuits implemented within an integrated circuit.

Thus, the functions of the present invention can be embod-
ied in the form of methods and apparatuses for practicing
those methods. One or more aspects of the present invention
can be embodied in the form of program code, for example,
whether stored in a storage medium, loaded into and/or

US 9,363,068 B2

11

executed by a machine, wherein, when the program code is
loaded into and executed by a machine, such as a processor,
the machine becomes an apparatus for practicing the inven-
tion. When implemented on a general-purpose processor, the
program code segments combine with the processor to pro-
vide a device that operates analogously to specific logic cir-
cuits. The invention can also be implemented in one or more
of an integrated circuit, a digital processor, a microprocessor,
and a micro-controller.

It is to be understood that the embodiments and variations
shown and described herein are merely illustrative of the
principles of this invention and that various modifications
may be implemented by those skilled in the art without
departing from the scope and spirit of the invention.

We claim:

1. A method performed by a processor, comprising:

obtaining at least one software instruction that performs at

least one non-linear convolution function for a plurality
of input delayed signal samples;

in response to said at least one software instruction for said

at least one non-linear convolution function, performing
the following steps:
generating a weighted sum of two or more of said input
delayed signal samples, wherein said weighted sum
comprises a plurality of variable coefficients defined as
a sum of one or more non-linear functions of a magni-
tude of said input delayed signal samples; and

repeating said generating step for at least one time-shifted
version of said input delayed signal samples to compute
a plurality of consecutive outputs, wherein said at least
one software instruction for said at least one non-linear
convolution function is part of an instruction set of said
processor.

2. The method of claim 1, wherein said processor com-
prises a vector processor.

3. The method of claim 1, wherein said plurality of variable
coefficients defined by a non-linear function of a magnitude
of said input delayed signal samples are implemented using
one or more look-up tables.

4. The method of claim 1, wherein said non-linear convo-
Iution function models a non-linear system with memory.

5. The method of claim 4, wherein said non-linear system
with memory comprises one or more of a power amplifier
model and a digital pre-distortion function.

6. The method of claim 1, wherein said at least one non-
linear convolution function is implemented using one or more
look-up tables having linear interpolation.

7. The method of claim 1, wherein said at least one non-
linear convolution function is implemented using one or more
look-up tables having polynomial interpolation.

8. The method of claim 1, further comprising the step of
loading at least one user-specified parameter from memory
into at least one register file.

9. The method of claim 8, wherein said user-specified
parameter comprises a look-up table storing values of said
non-linear convolution function for one or more input values.

10. The method of claim 1, further comprising the step of
reading said plurality of input delayed signal samples directly
from memory into functional units for said non-linear convo-
lution function.

11. A processor configured to implement a signal process-
ing function in software, comprising:

a memory; and

at least one hardware device, coupled to the memory,

operative to:

10

15

20

25

30

35

40

45

50

55

60

12

obtain at least one software instruction that performs at
least one non-linear convolution function for a plurality
of input delayed signal samples;

inresponse to said at least one software instruction for said

at least one non-linear convolution function:

generate a weighted sum of two or more of said input

delayed signal samples, wherein said weighted sum
comprises a plurality of variable coefficients defined as
a sum of one or more non-linear functions of a magni-
tude of said input delayed signal samples; and

repeat said generating step for at least one time-shifted

version of said input delayed signal samples to compute
a plurality of consecutive outputs, wherein said at least
one software instruction for said at least one non-linear
convolution function is part of an instruction set of said
processor.

12. The processor of claim 11, wherein said processor
comprises a vector processor.

13. The processor of claim 11, wherein said plurality of
variable coefficients defined by a non-linear function of a
magnitude of said input delayed signal samples are imple-
mented using one or more look-up tables.

14. The processor of claim 11, wherein said non-linear
convolution function models a non-linear system with
memory.

15. The processor of claim 14, wherein said non-linear
system with memory comprises one or more of a power
amplifier model and a digital pre-distortion function.

16. The processor of claim 11, wherein said at least one
non-linear convolution function is implemented using one or
more look-up tables having linear interpolation.

17. The processor of claim 11, wherein said at least one
non-linear convolution function is implemented using one or
more look-up tables having polynomial interpolation.

18. The processor of claim 11, further comprising the step
of'loading at least one user-specified parameter from memory
into at least one register file.

19. The processor of claim 18, wherein said user-specified
parameter comprises a look-up table storing values of said
non-linear convolution function for one or more input values.

20. The processor of claim 11, further comprising the step
of reading said plurality of input delayed signal samples
directly from memory into functional units for said non-linear
convolution function.

21. An article of manufacture, comprising a non-transitory
machine readable recordable medium containing one or more
programs which when executed by a processor implement the
steps of:

obtaining at least one software instruction that performs at

least one non-linear convolution function for a plurality
of input delayed signal samples;

inresponse to said at least one software instruction for said

at least one non-linear convolution function, performing
the following steps:
generating a weighted sum of two or more of said input
delayed signal samples, wherein said weighted sum
comprises a plurality of variable coefficients defined as
a sum of one or more non-linear functions of a magni-
tude of said input delayed signal samples; and

repeating said generating step for at least one time-shifted
version of said input delayed signal samples to compute
a plurality of consecutive outputs, wherein said at least
one software instruction for said at least one non-linear
convolution function is part of an instruction set of said
processor.

